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Background

 Floods are the most common climate-related disaster in the
world. Frequency and destructive power of floods have been
observed increasing, due to:
 Intensity of precipitation events is projected to increase in

most tropical areas, IPCC (2007).
 Rapid urbanization process has led to shorter response and

greater peak of discharge in rivers.

 Inadequate information on river flow has limited ability to put
in place effective river management and flood mitigation plans.
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Background

Rural flood

Urban flood
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Satellite image of the Typhoon Ketsana
9:00 AM, September 29, 2009
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Motivation

“Propose of short-term flood forecast model by coupling the relatively 
high resolution NWP model with the hydrological model”
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 Kardhana et al. (2008) examined the
combination of NWP (mesoscale
model) and distributed rainfall runoff
model for flood forecast.

 Younis et al. (2008) used limited area
NWP for flash flood forecasting in
France.

 Collischonn et al. (2004) introduced
flood forecast based on rainfall forecast
from a regional scale NWP for
Uruguay river basin.

 Jens et al. (2005) coupled
meteorological model (ECMWF, global
scale) with hydrological model for
flood forecasting.

Previous studies



Case study

77

Methodology

 Ve River Basin, medium
size, area of about 750km2.

 Channel networks are
delineated based on sub-
basins of 500m grid cell
size (original DEM-90m).

Outlet
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NWP Model

Global Spectral Model (GSM) is operational at Japan
Meteorological Agency (JMA)

 Globally covered, 0.5O spatial resolution, 60 vertical layers
 Initial time (4 times per day): 00UCT, 06UTC, 12UTC,
18UTC
 Forecast lead time:

• 84 hours: 00UCT, 06UTC, 12UTC, 18UTC
• 84-192 hours: 00UCT, 12UTC

 Precipitation is accumulated for 6-hr intervals: 00-06UTC,
06-12UCT, 12-18UTC, and 18-24UTC

Methodology



 The NWP overestimates/underestimates for light/intense
rainfall respectively.
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Methodology

Time series of observed and forecasted rainfall (Sep-Oct, 2008) 
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 Model output statistic (MOS)
 Glahn et als (1972) proposed MOS approach in objective weather forecasting. The

MOS consists of determining a statistical relationship between a predictant and
predictors.

 Predictant: events for which the MOS are intended to produce forecasts.
 Predictor: output fields from NWP and other meteorological data used in making

forecasts.
 Multiple linear regression (MLR) for MOS equation development

Rmlr = Multiple linear regression QPF; Rdmo = direct model output QPF; X2,n =
independent NWP parameters; ao = regression constant; a1,n = regression
coefficients; n = number of independent parameters.
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Model Output Statistic
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 Artificial neural network (ANN)
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where, ∈ is the learning rate, w is the weight, E is the error

 Backpropagation ANN algorithm is used to predict rain rate.
 The approximation used for the weight change is given by the delta rule.

Methodology

Model Output Statistic



 Preliminary selection
 GSM product provides forecast of 104 parameters at different pressure levels,

from 10hPa to the earth surface.
 Preliminary selection of predictors based on convention that orographic rainfall is

predominant in the study area.
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Predictor selection

 Final selection
 Stepwise regression (or forward selection) technique was usually used to select a

good set of predictors (Wilk, 2006).

Parameters Unit Pressure layer (hPa)
Accumulative precipitation (mm/6-hr) Surface
Meridional wind velocity (m/s) 700, 850
Zonal wind velocity (m/s) 700, 850
Pressure vertical velocity (Pa/s) 700, 850

Total parameter 7

Methodology
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Tank Model
Methodology

Tank model is a physically based, semi-distributed rainfall runoff model that
simulates flow in the river, Kato and Mano (2003). The Tank model was
selected based on following considerations:

Wide range of application for various spatial and temporal scales.
Model parameters are minimized and nearly free from calibration
requirement.
 Calibration required parameter, the dimensionless modification
coefficient (c) on the saturated hydraulic conductivity, optimal value of c is
about 10.

Precipitation

Interception

Top soil layers

Direct runoff

Subsurface flows River



 Model statistics
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Results and discussion
 Flood forecast based on actual output from NWP – 24hr lead time

Discharge NSI
Error (%)

Runoff Volume Peak
QRep 0.83 44.83 3.95 5.62 
QMDO 0.63 49.92 4.94 38.06 

Discharge NSI
Error (%)

Runoff Volume Peak
QRep 0.92 21.78 1.89 15.48 
QMDO 0.89 25.40 1.72 33.26 

Single storm event Continuous storms event
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Obs. v.s forecasted river flow for: single flood event Oct 10th – 13th (left), continuous flood 
events Nov 17th – 27th (right), 2008 
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Results and discussion

Type of storm event ao a1 a2 a3

Single (a) -3.37 1.31 0.00 -7.95

Continuous (b) 9.84 0.58 -13.42 10.97

 Regression constants and regression coefficients 
used in MOS equations

850370021 VVdmoomlr PaPaRaaR +++=

 Separate equations for single storm events
and continuous storm events were formulated
based on training data of the wet season, 2008.

 MOS to improve QPF

(b)(a)

 ANN training network includes three input nodes, single hidden layer, and one output node.

Hyetographs of accumulated rainfall prediction with 24-hr lead time 
(a) single event, Oct 10th – 13th, 2008; and (b) continuous events, Nov 17th – 27th, 2008 
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Obs. v.s forecasted river flow for: single flood event Oct 10th – 13th (left), continuous flood 
events Nov 17th – 27th (right), 2008 

 Model statistics
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Results and discussion
 Flood forecast based on MOS quantitative precipitation forecast – 24 hr lead time

Discharge NSI
Error (%)

Runoff Volume Peak
Q_rep 0.83 44.83 3.95 5.62 
Q_mlr 0.76 88.44 39.94 8.41 
Q_ann 0.83 35.78 6.20 5.24 

Discharge NSI
Error (%)

Runoff Volume Peak
Q_rep 0.92 21.78 1.89 15.48 
Q_mlr 0.93 21.44 0.26 27.35 
Q_ann 0.94 17.10 0.66 20.72 

Single storm event Continuous storms event
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Obs. v.s forecasted river flow for the single 
flood event on Dec 25th – 29th, 2008 

 Model statistics
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Model validation

Discharge NSI
Error (%)

Runoff Volume Peak
Q_dmo 0.51 37.22 37.23 37.44 
Q_mlr 0.85 39.71 0.49 4.41 
Q_ann 0.81 24.71 17.11 1.65 
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Hyetographs of accumulated rainfall prediction for 
the validated event on Dec 25th – 29th, 2008 
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Conclusion

 Using direct model output QPF for flood forecast was found good agreement
with observed discharge during continuous storm events, while remarkable
uncertainties were found for single storm event (NSI = 0.63, runoff error =
50%, peak error = 38%).

 Flood forecast using MOS rainfall prediction significantly outperformed those
using from MDO. For single storm event, NSI, runoff and peak errors were
0.83, 36%, and 5.2% respectively.

 The results showed that rainfall prediction using ANN was better than those
obtained using MLR. Accordingly, forecasted river flows using ANN rainfall
prediction depicted better agreement to the measured discharge.

A short-term flood forecast model was proposed, the model has demonstrated very
high potential for further development, and extension of forecast lead time. The
key findings are summarized as following:
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Thank you very much for 
your attention
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