Numerical simulation of 2D flow and sediment transport at a river entrance

Prof. Hitoshi TANAKA TOHOKU University

1. Introduction

Research Framework

SEDIMENTATION STUDY

Sediment deposit in Lake Tuni(1)

Objective: Mathematical modeling of fluvial fan development in a reservoir -its modification due to climate change-

Sediment deposit in Lake Tuni(2)

Sediment deposit in Lake Tuni (1)

TOHOKU

Sediment deposit in a glacier lake

Huayna Potosi Glacier, Sep. 2010

Sediment deposit in a glacier lake

Sand terrace development in a lake (1)

(Tseng et al., 2007)

Sand terrace development in a lake (2)

(a) Case J

(b) Case K (Tanaka, 2010)

2. Numerical simulation method

Conservation equations for mass and momentum

$$\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0$$

$$\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M^2}{D}\right) + \frac{\partial}{\partial y} \left(\frac{MN}{D}\right) + gD\frac{\partial \eta}{\partial x} + \frac{\tau_x}{\rho} = 0$$

$$\frac{\partial N}{\partial t} + \frac{\partial}{\partial x} \left(\frac{MN}{D}\right) + \frac{\partial}{\partial y} \left(\frac{N^2}{D}\right) + gD\frac{\partial \eta}{\partial x} + \frac{\tau_y}{\rho} = 0$$

 η : the water level above the still water elevation, t: the time, xand y the horizontal coordinates, M and N the flow flux per unit width in x- and y-direction, respectively, g the gravitational acceleration, D the total water depth ($D=h+\eta$, h: still water depth), and n is Manning's friction coefficient. Using M, N and η

$$\frac{\tau_x}{\rho} = \frac{gn^2}{D^{7/3}} M \sqrt{M^2 + N^2}$$

$$\frac{\tau_y}{\rho} = \frac{gn^2}{D^{7/3}} N \sqrt{M^2 + N^2}$$

$$Ay = \frac{\eta \times M}{\sqrt{M^2 + N^2}}$$

 $\rightarrow X$

Sediment transport rate

Meyer-Peter-Muller formula with bed slope correction

$$q_B^* = 8\left(\tau^* - \tau_{cr}^*\right)^{1.5}$$
$$q_{BI}^* = q_B^* / C_I$$
$$C_I = \cos\theta \left(1 - \frac{\sigma}{\sigma - \rho} \frac{\tan\theta}{\mu_s}\right)$$

 θ :bed slope, σ :density of sand particle, μ s:coefficient of static friction

• Conservation of sediment mass $\frac{\partial z}{\partial t} + \frac{1}{1 - \lambda} \left(\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} \right) = 0$

$$\frac{\partial z}{\partial t} + \frac{1}{1 - \lambda} \left(\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} \right) = 0$$

 ${\mathcal X}$

3. Computation results

Calibration against 1996 flood event

Initial condition

Computation for a design flood

discharge(m³/s)

tidal variation

- 9 ----

3m

Thank you for your kind attention! Gracias!

2004. 10. 25

